

Outline

- Introduction
- The Bag of Time model
- An improved Bag of Time model
- Experiment results
- Conclusion

Introduction

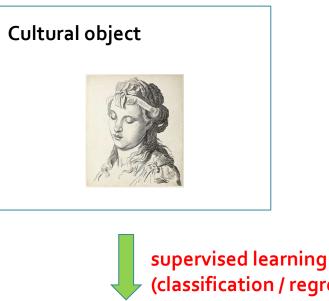
• AI (machine learning in particular) is more commonly utilized in analysis and promotion of cultural heritage content.

Applications of Heritage Content Analysis

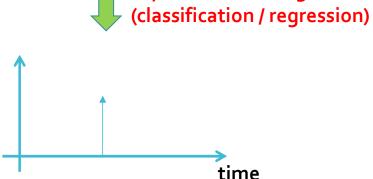
- Archeology perspective
 - Style classification
 - Author identification
 - Material prediction
 - Time prediction
- Historical perspective
- Aesthetic perspective

• • • • • •

Time Prediction from Cultural Objects

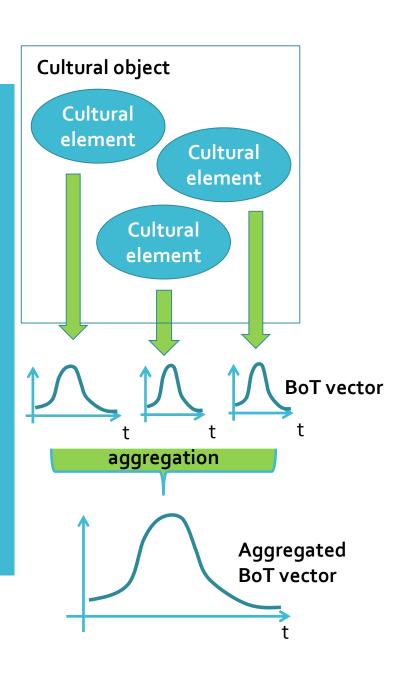


 A cultural object corresponds to a time point, which can be estimated by supervised learning.



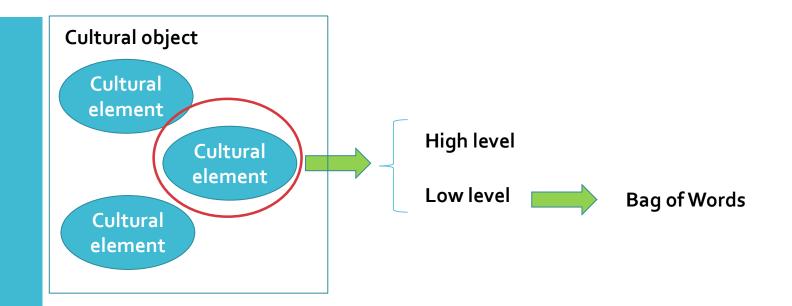
 Too simple to reveal insights and model uncertainties.

The Bag of Time Model



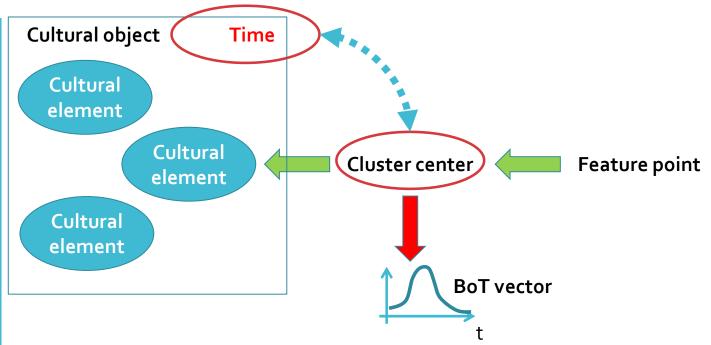
- A cultural object consists of cultural elements.
- Each cultural element represents a time distribution.
- An overall time distribution can be obtained by aggregation.

Define a Cultural Element



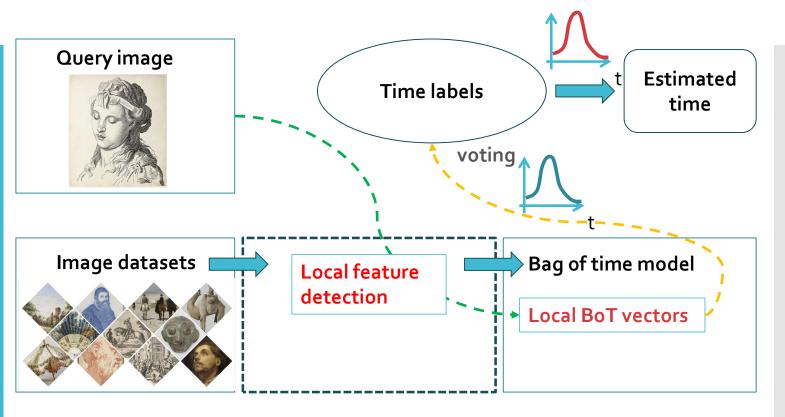
- · Cultural elements can be defined on various levels.
- The Bag of Words (BoW) framework offers a low-level representation.

Derive the BoT Model



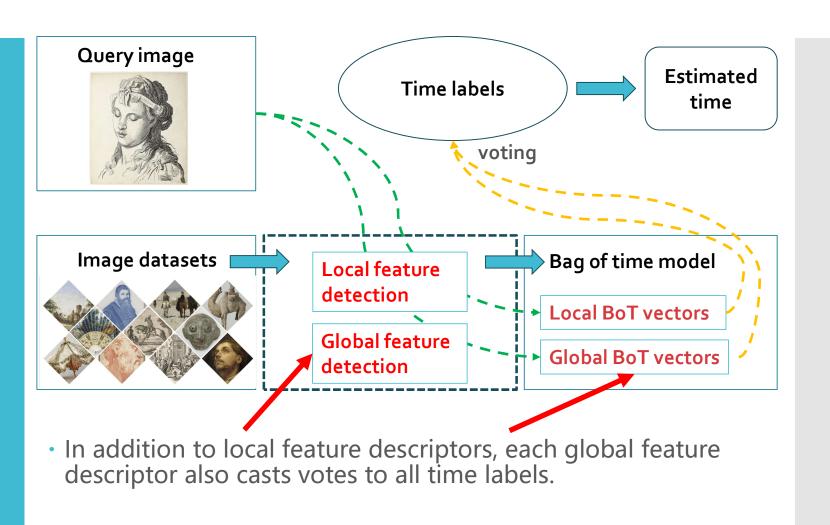
- Each local feature point corresponds to a cluster center.
- Each cluster center corresponds to a cultural element.
- We can estimate a time distribution for each cluster center.
- A BoT model can be built with a training set of images.

Prediction with the Bag of Time Model



- Compute the aggregated BoT vector for the query image.
- Each feature point casts multiple votes to different time labels.
- The most voted time label is selected.

Prediction with the Improved Bag of Time Model



An Improved Bag of Time Model

Voter selection

Voter modeling

Global feature incorporation

Global Feature Incorporation

 BoT vectors of global features are given a higher weight.

Aggregation of BoT vectors

• The weight is inversely proportional number of local pumber of l

local

inversely proportional to the number of local feature points.

 It adapts to each image.

global

Voter Modeling

Co-occurrence matrix

codeword

В	oT vect	or	
В	T vect	or	
В	T vect	or	
В	T vect	or	
В	T vect	or	

- A posteriori voter
 - Row-wise normalization

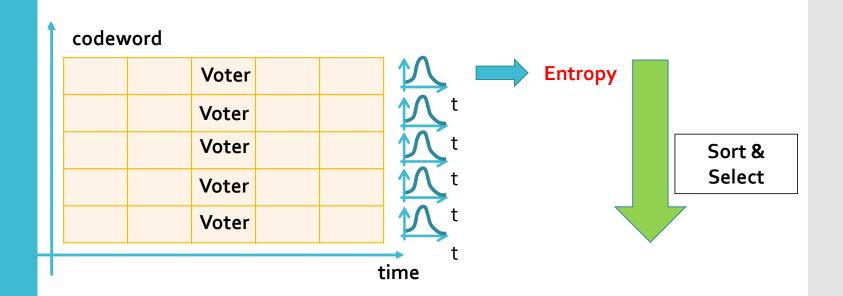
time

 Column-wise normalization

 Matrix-wise normalization

voter

Voter Selection



- Entropy is a well motivated criterion.
- Voters with low entropy (uncertainty) are preferred.

Experiment Overview

datasat	vocabu	lary size	no. of time labels	
dataset	local	global	no. of time label	
Buddha	512, 1024	256, 512	196	
Rijksmuseum	2048, 4096	2048, 4096	557	

- Two datasets: Buddha (1.2k), Rijksmuseum (100k)
- Local and global features: SIFT, ResNet50
- Different codebook sizes

Effects of Feature Fusion

dataset	vocabulary size		MAE	
	local	global	SIFT	SIFT+ResNet50
Buddha	512	256	372.71	276.00
		512		262.50
	1024	256	372.88	274.60
		512		256.88
Rijksmuse <mark>um</mark>	2048	2048	490.10	264.55
		4096		249.04
	4096	2048	492.08	264.81
		4096	492.00	251.30

- Different codebook sizes have been tested.
- The MAE (mean absolute error) is significantly reduced (>30%) after using global features.

Effects of Voter Modeling

dataset	voter type	MAE		
(vocab. size)		SIFT	SIFT+ResNet50	
Buddha	a posteriori	372.88	256.88	
Duddna	likelihood	388.44	284.99	
(1024, 512)	joint probability	372.41	257.77	
Rijksmuseum	a posteriori	490.10	249.04	
	likelihood	466.46	143.42	
(2048, 4096)	joint probability	524.81	266.63	

- Different codebook sizes have been tested.
- For Buddha, no significant difference is observed.
- For Rijksmuseum, the likelihood voter performs best.

Effects of Voter Selection

dataset	selection strategy		MAE	
(vocab. size)	local	global	SIFT	SIFT+ResNet50
Buddha	100%	50%	372.88	256.88
	50%	100%	372.58	265.63
(1024, 512)	50%	50%	372.58	265.63
	top 32		361.94	265.64
	top 16	100%	371.18	267.42
	top 8		397.67	266.85
D::l-si	100%	50%	492.08	264.81
Rijksmuseum	50%	100%	463.33	272.97
(4096, 2048)	50%	50%	463.33	272.97
	top 32		384.91	220.32
	top 16	100%	255.72	162.60
	top 8		325.80	157.49

- Different selection strategies have been tested.
- A significant part of voters can be ignored without impacting the MAE.
- Global voters play a dominant role.

Conclusion

- We propose an enhanced Bag-of-Time (BoT) model that improves the task of time estimation for cultural heritage images by introducing a feature fusion strategy and refining the voting mechanism.
- Our method incorporates both **local** and **global** features in a **unified framework**. This **dual-level** representation allows for more **robust modeling** of **temporal cues**, which is beneficial for **heterogeneous** heritage datasets.
- The optimal formulation of voters and the balance between local and global contributions are still open problems. A more supervised approach might work better.

Thank you

- ·Li Weng
- ·lweng@zfc.edu.cn

