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Introduction
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- Al (machine learning

in particular) is more
commonly utilized in
analysis and
promotion of cultural
heritage content.



Applications
of Heritage

Content
Analysis

Al4Culture
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- Archeology perspective

- Style classification

- Author identification
- Material prediction

- Time prediction

- Historical perspective
- Aesthetic perspective



Cultural object - A cultural object
corresponds to a
time point, which

Time can be estimated
Prediction by supervised
from learning.
C u Itu ra | ?cl:z::;:‘:z:filena; I;‘I;nggression)
Objects ) - Too simple to
reveal insights
T and model
S uncertainties.

time
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The Bag of

Time Model
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Cultural object

Cultural
element
Cultural

element

Cultural
element

BoT vector

t

A
Aggregated
BoT vector

>
t

- A cultural object

consists of cultural
elements.

- Each cultural

element represents
a time distribution.

- An overall time

distribution can be
obtained by
aggregation.



Define a

Cultural
Element

Cultural object

Cultural
element

Cultural

element
Cultural
element

—

- Cultural elements can be defined on various levels.

High level

Low level ‘ Bag of Words

- The Bag of Words (BoW) framework offers a low-
level representation.
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Derive the

BoT Model

Cultural object ( /Ti—rrbﬁu
2

Cultural
element

Cultural
element

Cultural
element

A
NT vector

t
- Each local feature point corresponds to a cluster center.

- Each cluster center corresponds to a cultural element.
- We can estimate a time distribution for each cluster center.
- A BoT model can be built with a training set of images.
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Prediction
with the Bag

of Time
Model

Query image
n

Time labels

' t| Estimated

time

Local feature
detection b

Local BoT vectors [/

- Compute the aggregated BoT vector for the query image.

- Each feature point casts multiple votes to different time labels.

- The most voted time label is selected.
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Prediction
with the

Improved
Bag of Time
Model

Query image
.
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- In addition to local feature descriptors, each global feature
descriptor also casts votes to all time labels.
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An Improved

Bag of Time
Model
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Voter selection

Voter modeling

AN

Global feature
Incorporation

AN




Global

Feature
Incorporation

global
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local

- BoT vectors of global

features are given a
higher weight.

- The weight is

inversely
proportional to the
number of local
feature points.

- It adapts to each

Image.



Voter

Modeling
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Co-occurrence

matrix
" codeword
B6T vector A posteriori voter
- Row-wise ]
BoT vector normalization
BoT vector
BoT vector - Likelihood voter
BoT vector - Column-wise

N normalization

time
‘normalization ] .
- Joint probability voter

voter - Matrix-wise
normalization

voter

voter

voter

voter ‘ \:-1 3




Voter

Selection

A

codeword

Voter u ‘ Entropy

Voter ﬂt

Voter ﬂt Sort &
Voter ﬂt Select
Voter ﬂt

- Entropy is a well motivated criterion.
- Voters with low entropy (uncertainty) are preferred.
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vocabulary size

dataset Tocal global no. of time labels
Buddha 512, 1024 256, 512 196
Rjjksmuseum 2048, 4096 | 2048, 4096 557

Experiment

Overview

- Different codebook sizes

SUMAC'25

- Two datasets: Buddha (1.2k), Rijksmuseum (100k)
- Local and global features: SIFT, ResNet50

s



Effects of

Feature
Fusion

— vocabulary size MAE
local | global | SIFT | SIFT+ResNet50
512 2l 37271 /760\
512 262.50
BRI 256 274.60
1024 519 372.88 256.88 \
2048 264.55
o . | apgs | 249.04 /
: o 4096 2048 492.08 i
4096 ' 251 30

- Different codebook sizes have been tested.
- The MAE (mean absolute error) is significantly

reduced (>30%) after using global features.
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Effects of

Voter
Modeling

dataset A— MAE
(vocab. size) v P SIFT SIFT+ResNet50
a posteriori 372.88
Bakgpn likelihood 38844 |
(1024,512) | joint probability | 372.41
o2 a posteriori 490.10
ST likelihood 466.46
(2048, 4096) | joint probability | 524.81

- Different codebook sizes have been tested.

- For Buddha, no significant difference is observed.

- For Rijksmuseum, the likelihood voter performs best.
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dataset selection strategy MAE
(vocab. size) | local | global SIFT SIFT+ResNet50
100% | 50% 372.88 256.88
Budha 50% | 100% 372.58 265.63
(1024, 512) 50% 50% 372.58 265.63
top 32 361.94 265.64
top 16 | 100% 371.18 267.42
top 8 397.67 266.85
Effe CtS Of ———— 100% | 50% 492.08 264.81
50% 100% 463.33 272.97
Vote r (4096, 2048) || 50% 50% 463.33 272.97
- top 32 384.91 220.32
Selection top 16 | 100% 255.72 162.60
top 8 325.80 157.49

- Different selection strategies have been tested.

- A significant part of voters can be ignored without
impacting the MAE.

- Global voters play a dominant role.
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Conclusion

- We propose an enhanced Bag-of-Time (BoT) model

that improves the task of time estimation for cultural
heritage images by introducing a feature fusion
strategy and refining the voting mechanism.

- Our method incorporates both local and global

features in a unified framework. This dual-level
representation allows for more robust modeling of
temporal cues, which is beneficial for heterogeneous
heritage datasets.

- The optimal formulation of voters and the balance

between local and global contributions are still open
roblems. A more supervised approach might work
etter.
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Thank you

-Li Weng
‘lweng@zfc.edu.cn
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